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 Abstract 

This research paper present an efficient and robust way of tuning PID controller using five 

variants of compact Differential Evolution (cDE) algorithms for speed control of a dynamic 

system, with major focus on external disturbance mitigation. Control systems should not only be 

designed to track the command input (desired speed), but they should also be evaluated on the 

basis of their ability to mitigate the effects of external disturbance resulting from both natural 

sources (winds, thunder strike, etc), and man oriented events (e.g. explosive, etc), and also the 

effects of internal disturbance due to system parameters deviation from the optimal. Many 

catastrophic effects resulting from failure of control systems is often traced to inability of the 

system to maintain stability due to the effects of external disturbance or system parameter 

deviation. Out of the five variants implemented, cDE/rand/2/exp using exponential crossover 

appear to be more promising in addressing this problem with root mean square error (RMSE) of 

16.45 RPM, maximum disturbance unit step amplitude of 0.00133 that rapidly decayed to zero 

within 1 second. The second best algorithm is cDE/rand/2/bin using binomial crossover with 

RMSE of 16.45 RPM, and maximum disturbance unit step amplitude of 0.00136. One of the 

major advantage of using compact differential evolution in this research as compared with the 

population based variants is that cDE can be implemented using single chip microcontrollers with 

limited memory space to effectively fine-tuned PID gains for real time control of complex 

systems. The controller implemented in this research depicted a robust performance not only in 

tracking the command input (desired speed), but also in mitigating the effect of external 

disturbance. 

 Index Terms: — Compact Differential Evolution algorithms, PID controller, Step response, 

Ziegler–Nichols tuning method, optimization, objective fitness function, External disturbance.  

——————————  —————————— 

1. Introduction 

ONe of the major challenge of any speed 

control system, is the ability to coup with 

unpredictable changes resulting from within 

the system or its environment or target speed. 

Speed control systems are face with different 

challenges depending on their application 

and the environment they are designed to be 

used, among these are disturbance from 

natural events such as wind, unpredictable 

change of their target speed for non-

stationary target, changes resulting from 

system model parameters, etc. To mitigate 

the chances of the system missing its target, 

we proposed a generalised intelligent control 

schemes for speed control systems that uses 
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compact Differential Evolution (cDE) 

optimization algorithm to tune the PID gains 

of a speed controlled system in a dynamically 

changing environment. 

2. OPTIMIZATION OR TUNING 

ALGORITHMS 

A brief description of the optimization 

algorithms implemented are presented in this 

section. The advantages of global search 

capability of compact Differential 

Evolutionary (cDE) algorithms variants were 

explored to evolve the gains of the PID 

controller. The complexity of many heuristic 

controllers becomes increasingly 

complicated due to meta parameters (free 

parameters) in the model or controller frame 

work that govern their behaviour, and 

efficiency in optimizing a given problem. 

How best a given controller can solve a given 

problem, depends on the correct choice of the 

meta parameters. The values of those 

parameters are problem dependent, thus for 

each problem, those parameters need to be 

fined tune to get the optimum or near 

optimum. The tuning imposed another 

optimization problem. The PID gains of the 

speed control system depicted in this paper 

were optimized using compact differential 

evolution (cDE) algorithms. 

 

3. Compact Differential Evolution 

(cDE) 
 The population based DE algorithm 

variants are not memory efficient even 

though they are often more robust and 

accurate in solving many optimization 

problems than the compact variants. The 

compact version of DE which can easily be 

implemented in embedded systems with 

limited memory constrained is used in this 

study. Compact differential evolution (cDE) 

algorithm is achieved by incorporating the 

update logic of real values compact genetic 

algorithm (rcGA) within DE framework [9]. 

The steps involves in cDE is as follows: A (2 

x n) probability vector PV consisting of the 

mean µ and standard deviation σ is generated. 

Where n is the dimensionality of the problem. 

At initialization, µ was set to 0 while σ was 

set to a very large value 10, in order to 

simulate a uniform distribution. A solution 

called the elite is sampled from the PV. At 

each generation (step), other candidate 

solutions are also sampled from the PV 

according to the mutation schemes adopted 

e.g. for DE/rand/1 three potential candidate 

solutions Xr1, Xr2 and Xr3 are sampled. 

Without lost of generality, each designed 

variable Xr1[i] belonging to a candidate 

solution Xr1, is obtained from the PV as 

follows: For each dimension indexed by i, a 

truncated Gaussian probability density 

function (PDF) with mean µ and standard 

deviation σ is assigned. The truncated PDF is 

defined by Eq.  (1). 

The cumulative density function (CDF) of 

the truncated PDF is obtained. A random 

number rand(0,1) is sampled from a uniform 

distribution. Xr1[i] is obtained by applying 

the random number rand(0,1) generated to 

the inverse function of the CDF. Since both 

the PDF and CDF are truncated or 

normalized within the range [-1, 1]; the actual 

value of Xr1[i] within the true decision space 

of [a, b] is obtain as (𝑋𝑟1[𝑖] + 1)
(𝑏−𝑎)

2
+ 𝑎. 

The mutant (provisional offspring) is now 

generated using the mutation schemes. The 

offspring is evolved by performing a 

crossover operation between the elite and the 
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provisional offspring as described in Section 

3.2. The fitness value of the offspring is 

computed and compare with that of the elite. 

If the offspring outperform the elite, it 

replaces the elite and declared the winner 

while the elite the loser; otherwise the elite is 

maintained and declared the winner while the 

offspring the loser. In this study, the fitness 

function is the weighted sum of the peak 

overshot, rise time and settling time obtain 

using step input command as depicted by Eq 

(7). The PV is updated using Eq. (1). Hence 

in cDE, instead of having a population of 

individuals (candidate solutions) for every 

generation as in normal DE, the population 

are represented by their probability 

distribution function (i.e. their statistics), thus 

minimizing the computational complexity, 

amount of memory needed, and the 

optimization time. cDE consist of only one 

candidate solution called the elite, which is 

either maintained or replaced by its offspring 

in the next generation subject to its fitness. 

𝑃𝐷𝐹(𝜇[𝑖], 𝜎[𝑖]) =
𝑒

−(𝑥−𝜇[𝑖])2

2𝜎[𝑖]2 √2
𝜋

𝜎[𝑖](erf (
𝜇[𝑖] + 1

√2𝜎[𝑖]
) − erf (

𝜇[𝑖] − 1

√2𝜎[𝑖]
))

 

(1) 

𝜇𝑡+1[𝑖] = 𝜇𝑡[𝑖] +
𝑤𝑖𝑛𝑛𝑒𝑟[𝑖] − 𝑙𝑜𝑠𝑒𝑟[𝑖]

𝑁𝑝
 

𝜎𝑡+1[𝑖] = √(𝜎𝑡[𝑖])2 + 𝛿[𝑖]2 +
𝑤𝑖𝑛𝑛𝑒𝑟[𝑖]2 − 𝑙𝑜𝑠𝑒𝑟[𝑖]2

𝑁𝑝
 

Where 𝛿[𝑖]2 = (𝜇𝑡[𝑖])2 − (𝜇𝑡+1[𝑖])2, 

t=generation, Np is virtual population while 

erf is the error function 

3.1 Mutation 

For every individuals (target vectors) Xi,G at 

generation G, a mutant vector Vi,G called the 

provisional or trial offspring is generated via 

certain mutation schemes [3][6][7]. Some of 

the mutation strategies commonly 

implemented in DE are given by Eqs. (2) to 

(5). while the ones used in this research are 

depicted by Eqs. (2), (3) and (5). 

 DE/rand/1 

𝑉𝑖,𝐺 = 𝑋𝑟1,𝐺 + 𝐹. (𝑋𝑟3,𝐺 − 𝑋𝑟2,𝐺) (2) 

 

 DE/best/1: 

𝑉𝑖,𝐺 = 𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹. (𝑋𝑟2,,𝐺 − 𝑋𝑟1,𝐺) (3) 

 

DE/rand-to-best/1: 

𝑉𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹. ( 𝑋𝑏𝑒𝑠𝑡,𝐺 − 𝑋𝑟𝑖,𝐺) +

𝐹. (𝑋𝑟2,𝐺 − 𝑋𝑟1,𝐺)   (4) 

 

DE/rand/2: 

𝑉𝑖,𝐺 = 𝑋𝑟1,𝐺 + 𝐹. (𝑋𝑟3,,𝐺 − 𝑋𝑟2,𝐺) +

 𝐹. (𝑋𝑟5,𝐺 − 𝑋𝑟4,𝐺)   (5) 

 

Where the indexes r1, r2, r3, r4 and r5 are 

mutually exclusive positive integers and 

distinct from i. These indexes are generated 

at random within the range [1 - PN]. Xbest,G is 

the individual with the best fitness at 

generation G while F is the mutation 

constant.          

 

3.2 Cross Over 

After the mutants were generated, the 

offspring Ui,G are produced by performing a 

crossover operation between the target vector 

Xi,G and its corresponding provisional 

offspring Vi,G. The two crossover schemes 

i.e. exponential and Binomial crossover are 

used in this study for all the cDE algorithms 

implemented. The Binomial crossover 

copied the jth gene of the mutant vector Vi,G 

to the corresponding gene (element) in the 
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offspring Ui,G if rand(0,1) ≤ CR or j=jrand. 

Otherwise it is copied from the target vector 

Xi,G (parent). The crossover rate CR is the 

probability of selecting the offspring genes 

from the mutant while jrand is a random 

integer in the range [1 - D], this ensure that at 

least one of the offspring gene is copied from 

the mutant. D is the dimension of the problem 

i.e. number of genes (elements) in each 

candidate solution. If CR is small it will result 

in exploratory moves parallel to a small 

number of axes of the decision space .i.e. 

many of the genes of the offspring will come  

from its parent than from the mutants, 

consequently the offspring will resemble its  

parent. In this way, the DE will serve as a 

local searcher as it bear strong exploitative 

capabilities than being explorative. On the 

other hand, large values of CR will lead to 

moves at angles to the search space’s axes as 

the genes of the offspring are more likely to 

come from the provisional offspring (mutant 

vector) than its parent. This will favour 

explorative moves. The Binomial crossover 

is represented by Eq. (6).  

𝑈𝑖𝐺
𝑗

 = {
𝑉𝑖𝐺

𝑗
 𝑖𝑓  𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑋𝑖𝐺
𝑗

 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      
 (6) 

For exponential crossover, the genes of the 

offspring are inherited from the mutant 

vector Vi,G starting from a randomly selected 

index j in the range [1 - D] until the first time 

rand(0,1) > CR after which all the other genes 

are inherited from the parent Xi,G 

[6][7][3].The exponential crossover is as 

shown in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: Exponential Crossover Pseudo 

code 

 Fitness Function Evaluation 

The optimization problem presented in this 

paper is a multi-objectives optimization 

problem since there are three cost functions 

to be minimised i.e. the maximum overshot 

(Mo), rise time (Tr) and settling time (Ts). In 

order to get a robust controller gains, the 

problem is converted to single objective 

problem with one cost function consisting of 

the weighted sum of the three objective 

functions, Eq. (7). The weights depends on 

the important or cost of risk resulting from 

that particular performance index. This 

approach is robust because different models 

can be evolved by just changing the weight to 

meet up with setting system performance 

specifications. 

𝛾 = 𝛼𝑜𝑀𝑜 + 𝛼𝑟𝑇𝑟 + 𝛼𝑠𝑇𝑠   (7) 

Where: γ is the combined or overall fitness 

function, Mo is the maximum overshot, Tr is 

𝑈𝑗,𝐺 = 𝑋𝑗,𝐺 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗 = 𝑟𝑎𝑛𝑑𝑖(1 , 𝐷) 

𝑈𝑖,𝐺
𝑗

= 𝑉𝑖,𝐺
𝑗

 

𝐾 = 1 

𝒘𝒉𝒊𝒍𝒆 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑟 𝐴𝑁𝐷 𝐾 < 𝐷 𝒅𝒐  

𝑈𝑖,𝐺
𝑗

= 𝑉𝑖,𝐺
𝑗

 

𝑗 = 𝑗 + 1 

𝒊𝒇 𝑗 = 𝐷 

𝑗 = 1 

𝒆𝒏𝒅 𝒊𝒇 

𝐾 = 𝐾 + 1 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 
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the rise time and Ts settling time, while αo, αr, 

and αs are their weights respectively.  For this 

research, after a manual tuning, the following 

values were used with Mo having the highest 

priority, αo =0.8, αr=0.1, and αs=0.1. Note, the 

maximum value the weight can take for this 

application is 1. This can differ for other 

models or application. 

4. Proportional Plus Integral Plus 

Derivative (PID) Controller 

It is interesting to know that nearly half of the 

industrial controllers used today are PID or 

modified PID or derivatives of PID 

controllers.  Some intelligent controllers e.g. 

Fuzzy logic or adaptive fuzzy logic are 

derivatives of basic PID i.e. they make use of 

the error and its derivative (rate of change of 

the error). There are different variant of the 

PID controller, the one used in this research 

is given by Eq. (8) while the transfer function 

Gc(s) of the controller is depicted by Eq. (9) 

[2][1][4][5]. A proportional controller will 

have the effect of reducing the rise time, but 

will not eliminate the steady-state error. 

Because of the present of pole at the origin 

introduced by the integral controller, the 

integral controller will have the capability of 

eliminating the steady-state error, but it may 

make the transient response worse. The 

derivative controller will have the effect of 

increasing the stability of the system, 

reducing the overshoot, and improving the 

transient response. The derivative controller 

predict future error using the rate at which the 

error is changing while the integral captured 

the cumulative effects of past errors to 

improve future system performance. 

𝑃𝐼𝐷 = 𝐾𝑝(𝑒(𝑡) + 
1

𝑇𝑖
∫ 𝑒(𝑡)

𝑡

𝑡0
𝑑𝑡 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
)

   (8) 

𝐺𝑐(𝑠) = 𝐾𝑝(1 + 
1

𝑇𝑖𝑠
 +  𝑇𝑑𝑠)  

   (9) 

Where: t is time, e(t) is present error at time 

t, Kp is the proportional gain while Ti and Td 

are integral and derivative time constants 

respectively, s is Laplace complex notation. 

Tuning of the PID gains (Kp, Ti and Td) 

using Ziegler–Nichols tuning method 

The process of selecting the controller 

parameters Kp, Ti and Td to meet a given 

performance specifications is known as 

controller tuning. Different variants of 

compact Differential Evolution (cDE) 

algorithms were used to evolve the PID 

gains. One of the major challenge is to define 

the decision search space i.e. the range within 

which each of the meta parameters (Kp, Ti 

and Td ) of the controller should be searched. 

To address this problem, Ziegler–Nichols 

tuning method was used to obtain the 

centroid of the radius of the search space. The 

Ziegler–Nichols reference gains were 

obtained using the mathematical model of the 

speed controlled system shown in Fig. (1). 

The centre of the radius for search of the 

gains Kp, Ti and Td are given by equations 

(10), (11) and (12) respectively [2]. 

𝐾𝑝 = 0.6𝐾𝑐𝑟   (10) 

𝑇𝑖 = 0.5𝑃𝑐𝑟    (11) 

𝑇𝑑 = 0.125𝑃𝑐𝑟   (12) 

Where Kcr and Pcr are the critical gain and 

critical frequency for self-sustained 

oscillation of the system. 
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The decision search space for each of the 

gains were obtained as follows: 

𝐾𝑝(𝑠𝑝𝑎𝑐𝑒) = [𝛼𝑚𝑖𝑛𝐾𝑝, 𝛼𝑚𝑎𝑥𝐾𝑝] 

 (11) 

𝑇𝑖(𝑠𝑝𝑎𝑐𝑒) = [𝛽𝑚𝑖𝑛𝑇𝑖 , 𝛽𝑚𝑎𝑥𝑇𝑖]  

 (12) 

𝑇𝑑(𝑠𝑝𝑎𝑐𝑒) = [µ𝑚𝑖𝑛𝑇𝑑 , µ𝑚𝑎𝑥𝑇𝑑]  

 (13) 

Kp, Ti and Td are given by equations (8), (9) 

and (10) respectively while after a manual 

tuning, the minimum and maximum values of 

α, β and µ were obtained as follows:   

𝛼𝑚𝑖𝑛 = 0.4,  𝛽𝑚𝑖𝑛 = 0.2, µ𝑚𝑖𝑛 =

0.2,  𝛼𝑚𝑎𝑥 = 5, 𝛽𝑚𝑎𝑥 = 4,  µ𝑚𝑎𝑥 = 4 

 

 

5. Mathematical model of the speed 

controlled system 

The rotation of the speed controlled system 

to meet up with a given target specifications 

is achieved using DC motor. 

𝑉 = 𝑅𝑎𝐼𝑎 + 𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝐸𝑏   (13) 

𝑇 = 𝐽
𝑑𝑤

𝑑𝑡
+ 𝐹𝑤    (14) 

𝐸𝑏 = 𝐾𝑏𝑤     (15) 

𝑇 = 𝐾𝑡𝐼𝑎     (16) 

𝑤 =
𝑑ϴ 

𝑑𝑡
     (17) 

Where V is motor terminal supply voltage, Ra 

armature resistance, La is armature 

inductance, Ia is armature current, Eb is back 

emf (electromotive force), T is the torque, w 

is the angular speed in rad/s, J is the inertia 

constant while F is the viscose constant, Kb is 

the back emf constant, t is time and ϴ is 

angular position in rad. 

The block diagram shown in Fig. 1 was 

obtain using equations (13) to (17) along with 

the controller, where WR is the command 

reference input speed while W is the actual 

controller output. 

Disturbance TD 

One of the expected effect of the PID 

controller other than tracking the command 

input, is to mitigate the effect of disturbance 

due to external sources e.g. wind or other 

sources. The response of the output with 

respect to the disturbance TD as input should 

die or decayed to zero within a very short 

time. The transfer function of the output W 

with respect to the disturbance TD, at 

command input WR = 0 is given by Eq (18) 

W

𝑇𝐷
=

𝑠𝐿𝑎+𝑅𝑎

(𝑠𝐿𝑎+𝑅𝑎)(𝑠𝐽+𝐹)+𝑠𝐾𝑡(𝐺𝐶(𝑠)+𝑠𝐾𝑏)
     (18) 

Without PID, GC(s) =1 but with PID controller 

GC(s) is given by: 

𝐺𝑐(𝑠) = 𝐾𝑝(1 + 
1

𝑠𝑇𝑖
 +  𝑠𝑇𝑑)  

All the parameters are the same as stated in 

Section 3.1.  

6. Results 

Each of the cDE variants were run for 50 

generations consisting with a virtual 

population of 10.  At the end of the 

generation, the must fitted (best) candidate is 

used to set the PID gains. The fitness function 

used during the tuning is the weighted sum of 

the maximum overshot, rise time and settling 

time, Eq. (7). The evolved best candidate was 

used to control the speed of the system. The 

system was tested using three different 

approaches, i.e. the system was tested using 

standard ram and parabolic input command. 

Thirdly a real world scenario was modelled 

as a command input to see how the output of 

the system can track the target input. The 
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performance index used to evaluate the 

accuracy of the system in tracking the 

command input is the root mean square error 

(RMSE) given by Eq. (19) [8]. RMSE is used 

as the performance metric because it is 

expressed in the same unit as the measured 

variable. In addition to this, it is less sensitive 

to errors due to outlier data points as compare 

with Mean Square Error (MSE). Hence the 

RMSE is a good metric for model selection 

where the risk resulting from the error is 

proportional to the error [8]. It is interesting 

to note that, the fact that the system depicted 

good performance for standard ram and 

parabolic input with low RMSE does not 

necessarily mean that the system will 

perform well when subjected to real world 

scenario with unpredictable change in 

command input and system (model) 

parameters. This is revealed when the 

untuned controller obtain directly using 

Ziegler–Nichols method was used. The 

RMSE of ram and parabolic command using 

untuned PID shown in Fig. 4 and Fig. 5 are   

0.0238 and 0.0040 respectively while for the 

tuned PID are 0.0236 and 0.0022 

respectively. But when the tuned and the 

untuned PIDs were tested using real world 

command input scenario, the untuned PID 

perform poorly while the tuned PID followed 

the command input closely as shown in Fig. 

3. This  research also validate that PID gains 

obtained using Ziegler–Nichols method may 

not be the optimum but is a useful tool for 

obtaining the radius (domain) of the search 

space within which the optimum or near 

optimum are likely to be found. The details 

of the numeric results obtained from the five 

cDE variants implemented in this research 

are shown in table 1. The speed controlled 

system in this research is designed and  

simulated using MATLAB as shown in Fig. 

8. The parameter of the model, and the meta 

parameters of the optimnization algorithms 

used are depicted in Fig. 8. 

The controller implemented in this research 

depicted a robust performance not only in 

tracking the command input, but also in 

mitigating the effect of external disturbance 

with a maximum unit step response of 1.59 x 

10-3, and decayed rapidly to zero within 1 

second as shown in Fig. 6. The normalised 

generational fitness function of the various 

cDE variants implemented are as shown in 

Fig. 7. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (W𝑅𝑖 − W𝑖)2𝑁

𝑖=1   (19) 

Where: RMSE is the root mean square error, 

N is the number of simulation time steps, WRi 

and Wi are the command input and the actual 

output at time index i respectively. 
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Fig. 1: Block diagram of the speed control system 

 

Fig. 2: Unit step response using: tuned PID and untune PID 
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Controller 

+ - + - 𝑘𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) 

𝐾𝑡

𝑠𝐿𝑎 + 𝑅𝑎
 

1

𝑠𝐽 + 𝐹
 

𝐾𝑏 
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Elite Controller 

 

Fitness Evaluation 

 Speed control 

System Model Mutation, Crossover 
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Fig 3: Real world command input using tuned and untune PID  

 

Fig. 4: Parabolic input command 



IJSER

  

10 

 

 

Fig. 5: Ram input command 

 

Fig. 6: Disturbance step response 
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Fig. 7: Generational fitness function of the cDE variants used      

    

Fig. 8: Control GUI 

 Table 1: Performance of the cDE variants implemented for speed control 

Algorithms RMSE for Three Inputs Max 

Disturbance 

Amplitude 

Max 

Overshot 

Rise 

Time 

Settling 

Time 

Fitness 

Real 

world  

Ram Parabolic 

cDE_rand_to_best_1_exp 16.58 0.0022 0.0236 0.00159 0.0145 0.00001 0.11 0.0226 

cDE_rand_2_bin 16.45 0.0019 0.0208 0.00136 0.0118 0.00001 0.11 0.0204 

cDE_rand_2_exp 16.45 0.0017 0.0179 0.00133 0.0134 0.00001 0.09 0.0197 

cDE_rand_1_bin 16.53 0.0022 0.0237 0.00152 0.0130 0.00001 0.11 0.0214 

cDE_rand_1_exp 16.57 0.0019 0.0207 0.00151 0.0145 0.01 0.06 0.0186 
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7. Conclusion  

The cDE algorithms variants proved to 

be an efficient optimizer for tuning the PID 

controller gains with cDE/rand/2/exp 

algorithm emerging as the best for addressing 

this particular control problem with 

maximum disturbance step unit amplitude 

0.00133, followed by cDE/best/1/bin with 

maximum disturbance step unit amplitude of 

0.00136. The controller implemented in this 

research depicted a robust performance not 

only in tracking the command input, but also 

in mitigating the effect of external 

disturbance.  
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